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Abstract - The parameters of the KLM and Mason’s 
equivalent circuits in the thickness mode are presented 
to include dielectric, elastic and piezoelectric loss. The 
models are compared under various boundary 
conditions with and without acoustic layers to the 
analytical solutions of the wave equation. We show 
that in all cases equivalence is found between the 
analytical solution and the KLM and Mason’s 
equivalent circuit models. It is noted that in order to 
maintain consistency with the linear equations of 
piezoelectricity and the wave equation care is required 
when applying complex coefficients to the models. The 
effect of the piezoelectric loss component on the power 
dissipated in the transducer is presented for loaded and 
unloaded transducers to determine the significance of 
the piezoelectric loss to transducer designers. The effect 
of the piezoelectric loss on the insertion loss was found 
to be small. 

I. INTRODUCTION 

Analytical solutions  to the wave  equation in 
piezoelectric materials  can  be quite cumbersome  to  derive 
from first principles in all but a few  cases. Mason[l],[2] 
was  able  to  show that for one-dimensional  analysis  most  of 
the difficulties in deriving the solutions  could  be  overcome 
by  borrowing from network theory. He presented an exact 
equivalent circuit that separated  the  piezoelectric  material 
into an electrical port and  two  acoustic  ports  through  the 
use  of an ideal electromechanical transformer  as  shown  in 
Figure 1. The model has been widely  used for free  and 
mass  loaded resonators[3], transient  response[4],  material 
constant determination[5], and a host of other 
applications[6]. One of the perceived  problems  with  the 
model  is that it required a negative capacitance at the 
electrical port. Although Redwood[4]  showed  that this 
capacitance  could be transformed to  the  acoustic  side  of  the 
transformer and treated llke a length of the  acoustic  line  it 
was still thought to be “un-physical”.  In  an  effort to 
remove circuit elements between the top  of the transformer 
and  the  node  of the acoustic transmission line Krimholtz, 
Leedom and Matthae[7] published an  alternative  equivalent 

circuit  as  shown in Figure 1. The model is commonly 
referred  to  as  the  KLM  model and has been used 
extensively  in  the  medical  imaging community in an effort 
to design high frequency transducers [8],[9], 
multilayers[lO],  and arrays[ll]. In  the  following sections 
we present  the  circuit  parameter for the  KLM and Mason’s 
equivalent  circuit for the case  where the piezoelectric, 
dielectric  and  elastic constants are represented by complex 
quantities to account for intrinsic loss in the material. 

11. DESCRIPTION OF THE  MODELS 

General Description 

The  KLM and Mason’s  model are shown in Figure 1 for 
the  thickness  mode. If the acoustic ports are shorted these 
models  reduce  to the free resonator equation derived from 
the linear  piezoelectric  equations and the wave equation [3] 
which  has been adopted by the IEEE Standard on 
Piezoelectricity[ 121 for determination of the  thickness 
material constants. 

The  constants  of  each model are shown in Table 
1. In  the  KLM  and  Mason’s equivalent circuit an electrical 
port is connected  to the center  node of the two acoustic 
ports  representing  the front and back face of  the  transducer. 
On  the electrical port  of  the  transformer all circuit elements 
are standard electrical elements and the voltage is  related  to 
the  current  via V =ZI  where Z is an electrical impedance. 
On  the  acoustical side of  the  transformer the force F and 
the  velocity v are related through F = Z,v where Z, is the 
specific  acoustic  impedance Z, cc pvA  where p is the 
density, v is the longitudinal  velocity  of the piezoelectric 
material  and A is  the area. It should be noted that the italic 
v = duldt is a variable  of the circuit model while the 
straight v is a constant  of  the material. The transformer is 
an ideal electromechanical  transformer that conserves 
power  during  the  transformation. The relationship between 
the  constants  of  the free resonator and the  KLM and 
Mason’s  equivalent circuits are shown in Table 1 in terms 
of  the  material  constants  of the free resonator. 



Losses 

Although the material constants  described in the IEEE 
Standards on Piezoelectricity are defined in terms of real 
coefficients a variety  of  authors  (Holland [13], 
Berlincourt[l4], Sittig [15], Katz[6], McSkimmin[l6]) 
have  suggested or used  complex  coefficients  to  describe 
the one or more loss  components in many  common 
piezoelectric materials. 

Table  1. The complex  material  constants  and the 
KLM and Masons  parameters 

Free  Resonator 

S E , ,  clamped  complex  permittivity 

C,, open circuit complex  elastic  stiffness 

kt complex electromechanical  coupling 

D 

E S 3 A  C, =- 
t 

N = C,h,, 

Z, = iz, tan(rt /2) Z,  = -iz, csc(rt) 
KLM Model 

C, =- 
t 

X ,  = iZ,M sin(I't / 2) 

Z, cos(rt / 2) + iZ, sin(rt / 2) 
Z, cos(I't / 2) + iZ, sin(rt / 2) 1 
Z, cos(r t  / 2) + iZ, sin(rt  / 2) 
Z, cos(r t  / 2) + iZ, sin(rt  / 2) 1 

Z T L  =Zo 

' T R  ='O 

Z,, Z, =load  impedance on left and  right 
acoustic ports 

In the  IEEE  Standard  of Piezoelectricity cautions are given 
about  losses,  dispersion, field, stress  and  time  dependence 
(aging) of the  material  constants for linear piezoelectric 
materials.  In  the  present  study  the material coefficients are 
defined  as  complex  constants which assumes that the 
applied  signals  are  small  (extrinsic effects negligible), the 
sample  is  well  aged  and that we are in a normal rather than 
an anomalous dispersion regime  where  the frequency 
dependence  of  the material coefficients are nearly flat. 
Using  the  complex  material constants the circuit 
parameters r, N, $, Z,, M, C, are now all treated as 

d 

Figure  1. KLM and Mason's equivalent circuits. Quantities 
in figure are defined in Table 1. 

complex  quantities. Identities for trigonometric functions 
with  complex  arguments  can  be found by  expanding the 
trigonometric  function in exponential form. A list of  these 



identities can be found in earlier  work on equivalent 
lumped circuit constants of free piezoelectric  resonators 
~171. 

111.  MODELING 

Open and Short Circuit Acoustic  Ports 
Consistency in the application of loss 

It is worth noting that care  must be taken  when 
applying losses  to the Mason and KLM  equivalent  circuits. 
In order to emphasize  these points consider the case  where 
the elastic and dielectric constants  including  losses  have 
been determined from the resonance  spectra  of a free 
resonator and the electromechanical coupling is assumed  to 
be real and determined  from. 

In  this case it can be shown  that  the  assumption  of 
loss-less  coupling  actually  implies  from  the  equation  for 
coupling defined in terms of the material  constants 

that a phase angle is present in each of  the  piezoelectric e,, 
and h,, coefficients (ie. these constants  are  complex). 
Rewriting the material constants  including  loss  in  polar 
form for  this case (k, real) we find 

whereeP and OES are the  phase  angles  associated  with 
the loss components of the elastic  stiffness and clamped 
permittivity. For  example the stiffness phase  angle  is 

0, = arctan(Im(cf,) / Re(cf,)) . (5) 
This  means that in order to  reproduce  the fit to  the  data 
determined from the free resonator  equation  using  either 
Mason’s  or the KLM equivalent circuit the  piezoelectric 
constant in the equations for the turns ratio N (or the M 
coefficient for the KLM  model)  must be treated as complex 
as described in equations 3 and 4. If  these turns ratio 
coefficients are treated as real then  it  can be shown  that for 
both the  KLM and Mason’s  model we are  assigning a non 
zero phase angle to k, 

The  KLM and Mason’s equivalent circuits were compared 
under  half open, full open and short circuit conditions on 
the  acoustic  port.  The material constants (Motorola 
3203HD)  used  for this comparison are shown in Table 2 
along  with the equivalent circuit parameters of each mode. 
Impedance  data  determine  from the analytical solutions, 
and the  KLM  and  Mason’s equivalent circuit are shown in 
Figure  2. All data for each of the models is  found  to 
overlip. 
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Figure  2. A comparison of the analytical solution, Mason’s 
and the KLM model under various acoustic boundary 
conditions.  All  models  were found to overlap. 

Layered Transducer Modeling 

The  analytical  solution for the impedance  of a 
piezoelectric  layer on a substrate  was derived from the 
wave  equation  by  Lakin, Kline and McCarron[ 181, A more 
recent derivation by Lukacs et al[ 191 extended the solution 
to include  loss  in the elastic, dielectric and piezoelectric 
constants  and first order dispersion in the dielectric 
constant.  These  solutions are valid for all cases where the 
lateral  dimensions of the acoustic layer and the 
piezoelectric  layer are much larger than either layer 
thickness. 

In  the  following section Mason’s and KLM 
equivalent  circuits are compared to the analytical solution 
for a high impedance backing (stainless steel) and a low 



impedance backing (epoxy) to  investigate  the  effects  of 
including  an acoustic layers on the various models. 
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Figure 3. A comparison  of  the  analytical 
solution, Mason’s and the KLM  model  with  stainless steel 
and epoxy backing layers. All models  were  found to’ 
overlap. 

The geometry stiffness, density  and  velocity, of the  each  of 
the backing layers are listed  in Table 3. The piezoelectric 
properties for the Motorola 3203 HD material  used  in  this 
simulation are shown in Table 2. The complex  material 
properties were  determined using Smits’  method[20]. 

The models are similar to the models  presented  in 
Figure 1 however each model also  has  an  acoustic 
transmission line element attached  to  one  of  the  acoustic 
ports of the piezoelectric to represent the  backing  layer. 

The results are shown  in  Figure 3. The analykal 
soloution, and the KLM and Mason’s  equivalent  circuit 
were  found  to produce identical impedance  curves  if  the 
loss  was  treated consistantly as  discussed previously. 

B. Effect of Piezoelectric Loss on Power  Spectrum 

The electrical power factor for  the  free  resonator 
shown in Figure 2 calculated using  the  material  constants 
in Table 2 is  shown in Figure  4.  The  electrical  power 
factors for the same resonator with k, real, e,, real and h,, 
real calculated using equation 2 are also shown  in the 
figure. It is clear for the free resonator  significant 
difference in the power spectra are apparent  below,  above 
and between & andf,. In the case  where k, is assumed  to 
be real, the power dissipated  above  and  below  resonance is 
symetric about the midpoint between& andf,. This  means 
that one can assess the  validity of the  assumption of k, real 

by  plotting the R/Z data  as a function of frequency and 
noting  whether  the  dissipation  is symetric about the 
midpoint between& andf,. In order to see the effect of the 
piezoelectric  loss on a tuned transducer rather than a free 
resonator we have  used  Mason’s equivalent circuit to 
model a backed  25  MHz transducer radiating into water. 
The  power  dissipated in the piezoelectric element of  the 
transducer  and  the 2 way insertion loss are shown in 
Figures 5 and 6. The piezoelectric material properties are 
from Table 2. The  dimensions of the piezoelectric were 
0 . 1 ~  x lmm squared. The tuning inductor was 492 
nH’s. The source inpedance  was 50 R. The specific 
acoustic  impedance  of  water  was Z= pAv = 6 kgls. The 
density,  length  and  velocity  of  the  backing  layer  were pb = 
1700  kg/m3, 1 = 0.002m and v = 2700(1+0.005i). 

1 
e33 = N =real 
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Figure  4.  Electrical  power factor for the measured 
resonator  and  assuming  lossless material constants 

The  power  dissipated  in the piezoelectric element is seen to 
have a signifigant  dependence on the piezoelectric loss 
designation.  This  means  that for S/N calculations, duty 
cycling, and heating effects properly including the 
piezoelectric loss can  aid in acurately determining these 
aspects  of  the  transducer design. 

The effect  of the loss designation is not as 
apparent on the  general shape of the insertion loss curve 
shown  in  Figure 6 .  However  at & the curves deviate by 
about 3 dB from each other. It is clear given the other 
approximations  (electrode  mass, sheet resistivity, potting 
effects,  mode  coupling coupling, dispersion and parasitic 
impedances  are  all  neglible)  assumed in the modeling that 



. 1 .  

the piezoelectric loss has very little effect on the  overall 
shape and bandwith of  the insertion loss. 

Table 2.  Complex material constants  determined from a 
average of 5 samples. KLM and  Masons  parameters for 
Motorola  3203HD material. 

Material Constants and Geometry of PiezoeIectric  Material 
(Motorola  3203HD) 

p = 7800 kg/m3  t = 0.001  m  Diameter = 0.015  m 
cg (x  10"  N/m2) = 1.77 (1 + 0.023i) 

& f 3  (x lo-* F/m) = 1.06 (1 - 0.053i) 

h,, (x lo9 V/m) =2.19 (1 + 0.029i) 
kt = 0.536 ( 1 - 0.005) 

C, (nF) = 1.87 (1 - 0.053i) 
N (C/m) = 4.1 1 (1  + 0.1Oi) 

v, (m/s) = 4674 (1 + 0.012i) 
r /u (x104  dm) = 2.10 (1 - O.012i) 

Mu (x105 Vs/mkg) = 3.33 (1 + 0.017i) 

Table 3. The acoustic properties of  the  epoxy  and  stainless 
steel backing materials 

t = 0.001 m  Diameter = 0.015  m 

ELKW 
p(kg/m3) = 1 100 

c33 (x lo9 N/m2) = 5.3 (1 + 0.li) 
v, (m/s) = 2200 (1 + 0.05) 

T/u ( x ~ O - ~  dm) = 4.53 (1 - 0.05) 
Stainless  Steel 

p(kg/m3) = 7890 
cg  (x 10" N/m2) = 2.645 (1 + 0.002i) 

vD (m/s) = 5790 (1 + 0.001i) 
T/w ( x ~ O - ~  dm) = 1.727 (1 - 0.OOli) 

D 

It also should be noted that setting  the  dielectric 
and  elastic  losses to zero was found to  have  very  effect on 
the insertion loss curve. The general shape  of  the  insertion 
loss  was  found  to be primarly dependent on the source 
impedance, tunning inductor, acoustic  impedance of the 
backing and the  water  and the real parts  of the material 
coefficients. It is interesting to  note  that for the Motorola 
3203 HD material that larger errors in the  modeling  occur 
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Figure 5. The electrical power dissipated in the 
piezoelectric  element  of the transducer described in text for 
k, measured, k, real, e33 Q_ N real, h33 real., and M real. 
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Figure 6. The  insertion loss for the various piezoelectric 
loss designations. 

due to the inconsistancies  in the application of the 
piezoelectric  loss  component  compared to the assumption 
that k, is a real number. 

IV. CONCLUSIONS 

The  parameters  of  the KLM and Mason's equivalent 
circuits in the thickness mode were  presented for the case 
where  dielectric,  elastic  and piezoelectric losses are 
present. The models  were  compared and found to be 
equivalent under a  variety of boundary conditions when the 
loss  was  applied  consistently  in each of the models. The 
effect  of  piezoelectric, dielectric and elastic loss 



coefficients on the overall shape  of  the  insertion  loss  curve 
was found to be small and  independent of the  designation 
of piezoelectric loss. The dissipated  power  in the 
transducer was found to be dependent on the piezoelectric 
loss designation, which suggested that the  piezoelectric  loss 
is  important for determining heating  effects  in  the 
transducer. 
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